
Rate Stability and Output Rates in Queueing

Networks with Shared Resources

M. Jonckheere a, R.D. van der Mei a,b and ∗W. van der Weij a

a CWI, Probability and Stochastic Networks, Amsterdam, The Netherlands
b Vrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands

April 14, 2009

Abstract

Motivated by a variety of applications in information and communication systems, we con-
sider queueing networks in which the service rate at each of the individual nodes depends on
the state of the entire system. The asymptotic behaviour of this type of networks is funda-
mentally different from classical queueing networks, where the service rate at each node is
usually assumed to be independent of the state of the other nodes. We study the per-node
rate stability and output rates for a class networks with a general capacity allocation func-
tion. More specifically, we derive necessary conditions of per-node rate stability, and give
bounds for the per-node output rate and asymptotic growth rates, under mild assumptions
on the allocation function. For a set of parallel nodes, we further prove the convergence
of the output rates for most parameters and give a sharp characterization of the per-node
rate stability. The results provide new intuition and fundamental insight in the stability and
throughput behavior of queueing networks with shared resources.
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1 Introduction

The analysis of queueing networks has been subject to extensive research for the past few decades
and has been successfully applied in many application areas. In a vast majority of papers how-
ever, it is assumed that the service rate at each of the nodes of the network is fixed. For example,
in FCFS-based single- or multi-server nodes, non-idling servers are usually assumed to be au-
tonomous entities that operate at a fixed rate, independent of the state of the other queues in
the network. For the class of so-called Jackson networks [?], many stability and performance
issues are well understood.
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In this paper, we study queueing networks in which the service rates at each of the individ-
ual nodes are not independent, but depend on the state of the entire system, according to
some general capacity allocation function. For this type of models, exact structural results are
rare, and fundamental insight and intuition for seemingly simple questions about stability and
throughput are lacking. This motivates an in-depth study of the per-node stability for queueing
networks with a general class of capacity allocation functions.
Another source of motivation stems from applications in modern computer-communication sys-
tems, in which many heterogeneous applications share parts of the available infrastructure re-
sources. In such environments, different applications compete for access to shared resources,
both at the software level (e.g., mutex and database locks, thread pools) and at the hardware
level (e.g., bandwidth, processing power, disk access). For example, many Web-based services
are based on multi-tiered system architectures consisting of a client tier to provide an end-user
interface, a business logic tier to coordinate information retrieval and processing, and a data tier
with legacy systems to store and access customer data. Each end-user initiated Web transaction
typically consists of several sub-transactions that have to be processed in some fixed or prob-
abilistic order. To this end, application servers usually implement a number of thread pools,
each of which is dedicated to performing a specific sub-transaction. A particular feature of the
Web server performance model proposed in [?, ?] is that at any moment in time the active (i.e.,
non-idling) threads share a common Central Processing Unit (CPU) hardware in a PS fash-
ion. Other examples of performance models in which software resources compete for access to
shared hardware resources are presented in [?, ?]. Another interesting line of research in which
the service rates among different network nodes are dependent is focused on bandwidth-sharing
networks [?, ?], providing a natural modeling framework for describing the dynamic flow-level
interaction among elastic data transfers in communication networks. Queueing models with
shared resources also occur naturally in the modeling of the flow-level performance in wireline
data networks where the capacity of different links are shared among competing flows [?], or in
wireless networks, where a limited amount of bandwidth is shared among different users, and
where customers can communicate via a cascade of intermediate hops (cf. [?]).

A considerable amount of work has been dedicated to the stability of queueing networks (see
for instance [?, ?, ?]). Controlling overload situations is essential for the design of commu-
nication networks. A well-engineered network should of course avoid to experience overload.
However, the traffic fluctuations over time might lead to temporary surges that a well-designed
network should deal with. A fine understanding of the behaviour of the network in overload is
hence strongly needed. In particular, it is a fundamental issue to characterize, for given traffic
conditions, which queues are going to get instable and what are the asymptotic growth rates.
Recent results including a sharp characterization of per-node stability for parallel nodes with
a decreasing service allocation have been obtained in [?]. It clearly emerges from these papers
that general results for per-node stability for multi-layered networks (or networks with band-
width sharing) appear to be very challenging. In particular, if global stability is well known
for work-conserving networks, detailed (per-node) stability remains a difficult problem. For
general service allocations without monotonicity properties, it is to the best of our knowledge
an open problem, even for exponentially distributed services. Instead of focusing on stochastic
stability, an alternative approach to tackle stability issues is to weaken the stability definition
and to investigate the so-called rate stability of the network [?]. Roughly speaking, it consists
of characterizing the growth rates as linear or sub-linear. However, because in a great number
of practical situations, an overload situation is characterized by a linear asymptotic per node
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growth rate, rate stability provides a precious benchmark information in cases where a more
detailed stability description is almost hopeless. Using a similar line of thought, Egorova et al.
[?] give a partial characterization of the overload behavior, for the wide class of so-called α-fair
bandwidth sharing strategies defined in [?],by examining the fluid limit by suitable scaling the
number of flows in the system, and give a fixed-point equation for the corresponding asymptotic
growth rates.

In this paper we consider a queueing network with Poisson arrivals, exponential service-time
distributions at all nodes, internal feed-forward routing and with a structured work-conserving
allocation function driving the service in all nodes, that depend on the state of the entire system.
For this general model, we (1) derive necessary conditions of the per-node rate stability, and (2)
give bounds for the per-node output rate. We show how to use these conditions on a two-node
tandem network to get necessary and sufficient conditions of rate stability. For a set of parallel
nodes, we further prove the convergence of the output rates for almost all input parameters and
give a sharp characterization of the per-node rate stability. The results provide new intuition
and fundamental insight in the stability and throughput behavior of queueing networks with
shared resources, which is essential to design effective overload-control mechanisms.

The remainder of this paper is organized as follows. In Section 2 the model is described and the
relevant notation and definitions are introduced. In particular, the difference between stochastic
and rate stability is rigorously explained. In Section 3, asymptotic values as output rates and
growth rates are defined. Using the structure of the considered allocation functions, important
properties of these output rates are derived. In Section 4, some traffic inequalities are established
leading to necessary conditions for the rate stability of each node. We illustrate the obtained
results on a toy example. In Sections 5, we consider the special case parallel nodes (no routing)
with monotone allocations, and show that the necessary conditions derived in Sections 3 and
4 are also sufficient, for ’almost’ all parameters. Finally, in Section 6 we address a number of
challenging topics for further research.

2 Model and stability definitions

2.1 Network model

We consider an open queueing network with N queues. A job present at queue i is said to be
of class i (i = 1, . . . , N). External jobs arrive at queue i according to a Poisson process with
intensity λi ≥ 0. Denote the vector of external arrival rates by λ := (λ1, . . . , λN )>. The service
times at queue i are exponentially distributed with mean βi = 1/µi. Let µ := (µ1, . . . , µN ). The
state of the system is described by a vector x := (x1, . . . , xN ), where xi represents the number
of jobs of class i present in the system. Let x ∈ X := {0, 1, . . . , }N . When the system is in state
x, jobs of class i receive a service rate φi(x), where the function φ(x) := (φ1(x), . . . , φN (x)) is
referred to as the system capacity allocation function . It is important to note that the various
job classes are coupled since their individual service rates may depend on the state x of the
entire system. The queue discipline is assumed to have no prior knowledge about the actual
service requirements.
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2.1.1 Assumptions on the routing

After receiving service at queue i, a job is routed to queue j ∈ I := {0, 1, . . . , N} with probability
pij . We adopt the convention that when j = 0, the job simply leaves the network. Denote the
N -by-N routing matrix by P := (pik), where i, k = 1, . . . , N . We assume that there is no
loop in the routing, i.e., once a job has been served at a given queue, he never returns to this
queue. This type of routing is often referred to as feed-forward routing. Consequently, we can
order the queues such that pij = 0, 1 ≤ j ≤ i. The routing matrix P is substochastic, so that
R := (rij) := (I − P )−1 exists, where I is the N -by-N identity matrix. Moreover, let D = (dij)
be the N -by-N diagonal matrix with diagonal entries, dii := 1

µi
(i = 1, . . . , N). Using these

definitions, the load offered to queue i is given by

ρi := λ>RDei =
1
µi

N∑
j=1

λjrji, (1)

where ei is the i-th unit vector. Furthermore, denote ρ =
∑N

i=1 ρi.
Let X(t) := (X1(t), . . . , XN (t)), where Xi(t) denotes the number of jobs at queue i (i.e.,

either waiting or being served) at time t ≥ 0. Then the N -dimensional process {X(t), t ≥ 0} can
be described as a continuous-time Markov process with state space X . For a subset of indices
S, we denote by xS the restriction of the vector x to queues S, i.e., xS = (xi)i∈S .

2.1.2 Assumptions on the service rates

Throughout the chapter, the system allocation function φ(x) satisfies certain assumptions that
we describe here.

Assumption 1 (Work-conserving allocation). Whenever the system is not empty, all capacity
is assigned to the queues. For x 6= 0 = (0, . . . , 0),

N∑
i=1

φi(x)
µi

= 1, and φ(0) := 0. (2)

Without loss of generality, the total capacity of the system is assumed to be equal to 1 in
(2).

Assumption 2 (Symmetric uniform limits). For all subsets of indices U ⊆ {1, . . . , N} and
S = {1, . . . , N} \ U , there exists a function gU on {0, 1, . . . , }N−|U| and some strictly positive
numbers li, i ∈ U such that

∀j ∈ U , lim
xi→∞

φj(x)
µj

= ljg
U (xS). (3)

Note that lj does not depend on the set U . In many applications in computer-communication
systems the allocation functions have the following structure which is a special case of work-
conserving allocations with symmetric uniform limits

φi(x)
µi

=
fi(xi)∑N
j=1 fj(xj)

, x ∈ X , x 6= 0, (4)
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where fi(·) is a non-negative function such that fi(0) := 0 and limxi→∞ fi(xi) =: li < ∞ (i =
1, . . . , N). Note that in this case, Assumption 2 implies that

∀U ⊂ {1, . . . , N}, gU (xS) =

(∑
i∈U

li +
∑
i/∈U

fi(xi)

)−1

. (5)

In the sequel, we refer to these allocations as extended processor-sharing allocations. Here are a
few examples that have become classic models in queueing theory and performance evaluation

1. The limited processor-sharing allocation defined by

fi(xi) = min{xi, li},

where li is a positive integer.

2. The limited discriminatory processor-sharing allocation defined by

fi(xi) = wi min{xi, Ci},

where Ci is a positive integer and wi > 0 is a weight given to class i. In this case li = wiCi.
share of the capacity to each class the classes are weighted.

3. The coupled processors allocation defined by

fi(xi) = li1{xi>0},

where 0 < li < +∞ is a weight associated with class i. In the literature, this allocation is
sometimes referred to as the generalized processor-sharing (GPS) allocation.

The Assumptions 1 and 2 are not sufficient in general to get a sharp characterization of the rate
stability set of the network. To get more precise results, we may assume the following condition,
(which is naturally verified in the context of bandwidth sharing networks):

Assumption 3 (Monotonicity). φi is decreasing in xj, j 6= i.

2.2 Stability definitions

The study of stability of stochastic processes traditionally deals with the question of existence
of a measure that is invariant to the transition operator of the process and to which the process
converges in distribution or in total variation. We aim here at describing some ‘per-queue’ stabil-
ity properties, i.e., properties of the processes {Xi(s), s ≥ 0}, for i = 1, . . . , N . Since the process
{Xi(s), s ≥ 0} is not by itself a Markov process, this is generally a much more ambitious question
than describing the global stability (stability of X(t)) which is well-known for work-conserving
networks (see Theorem 1 below). To the best of our knowledge, the only per-queue stochastic
stability results have been obtained for a set of parallel queues with decreasing allocations and
there is no such result available for the general type of networks we consider here. Because the
usual definitions of stochastic stability did not lead so far (without stricter assumptions on the
allocation function and the topology) to tractable results, we turn our attention to a weaker
definition of stability that allows to give practical answers. Hence, we are primarily concerned
with the property of the conservation of rates through the network. Roughly speaking, it con-
sists of characterizing the asymptotic growth rates as linear or sub-linear and to characterize
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the set of input parameters such that the incoming traffic at a queue is equal to the outgoing
traffic. Interesting as a first-order stability property, rate stability turns out to also give useful
necessary conditions for stochastic instability. For later reference, we thus define the following
two notions of stability: rate stability and the stronger notion of stochastic stability.

From Assumption 2 the allocation functions φi(.), and hence the transition rates are bounded,
and thus the process X is non-explosive. Hence we may assume that X and all other stochastic
processes treated in the sequel have paths in the space D = D(R+,ZN+ ) of right-continuous
functions from R+ to ZN+ with finite left limits.

Definition 1 (Rate stability). The process {Xi(t), t ≥ 0} is said to be rate stable if

lim inf
t→∞

Xi(t)
t

= 0 a.s.,

and the process is called rate unstable if

lim inf
t→∞

Xi(t)
t

> 0 a.s.

Definition 2 (Stochastic stability). The process {Xi(t), t ≥ 0} is said to be stochastically stable
if

lim
r→∞

sup
t→∞

Pr {Xi(t) > r} = 0,

and the process is called stochastically unstable if

lim
r→∞

sup
t→∞

Pr {Xi(t) > r} > 0.

Moreover, the N -dimensional process {X(t), t ≥ 0} is said to be globally stochastically stable (or
stochastically stable) if {Xi(t), t ≥ 0} is stochastically stable for all i = 1, . . . , N .

The following result, characterizing the stochastic stability of the process {X(s), s ≥ 0},
is well-known for work-conserving networks. The total number of jobs can indeed be seen as
the number of jobs of a single queue with unit service rate and the global stability is then a
consequence of Loynes Theorem (cf., e.g., [?]).

Theorem 1 (Global stability). The network is globally stochastically stable if

N∑
i=1

ρi < 1.

The network is globally stochastically unstable if

N∑
i=1

ρi > 1.

Definition 3 (Rate stability subsets). Let S := {i : {Xi(t), t ≥ 0} is rate stable}, and U := {i :
{Xi(t), t ≥ 0} is rate unstable}.
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Since each queue is either rate stable or rate unstable, the index set {1, . . . , N} is partitioned
into the tuple P := (S,U), with S ∪ U = {1, . . . , N}, S ∩ U = ∅. In case of rate stability, the
number of jobs at queue i grows asymptotically ‘slower than t’ when t goes to infinity, at least
on some trajectories. In case of stochastic stability, the process {Xi(t), t ≥ 0} remains in a finite
neighborhood with positive probability. Remark that if {Xi(t), t ≥ 0} is an irreducible Markov
process, then stochastic stability is equivalent to requiring {Xi(t), t ≥ 0} to be positive recurrent
(see for example Theorem 12.25 in [?]). Note also that stochastic stability implies rate stability,
as it should, but that the converse result is generally not true.

The next result underlines the relation between rate instability and stochastic instability.

Proposition 1. For i = 1, . . . , N , lim inft→∞
Xi(t)
t > 0 implies that Xi(t)→∞ in probability.

Proof: Suppose that Xi(t) does not diverge to infinity in probability. Then there exists a
subsequence {tn, n = 0, 1, . . .} such that Xi(tn) → Zi (in probability) for some honest (i.e.,
almost surely finite) random variable Zi. Moreover, there exists another subsequence {t′n, n =
0, 1, . . .} such that {Xi(t′n)} → Zi almost surely [?]. Hence, Xi(t

′
n)−Zi
t′n

→ 0 almost surely and

since Zi is almost surely finite, Zi
t′n
→ 0 and Xi(t

′
n)

t′n
→ 0 almost surely, which implies that

lim inft→∞
Xi(t)
t = 0, almost surely. 2

Remark 1. Many authors (see for instance [?, ?, ?]) define rate stability differently, with slightly
stronger assumptions. For the purpose of our analysis, we prefer the given definition that allows
to link rate instability to the fact that a process is diverging to infinity.

3 Output rates and growth rates

3.1 Definition

The following notation is useful in the sequel. For a given sample path {X(s), s > 0}, we define
the Cesaro mean service rate at each queue of the network by

ϕi(t) :=
1
t

∫ t

0
φi(X(s))ds, i = 1, . . . , N, t > 0. (6)

The growth rate of queue i is defined by

Yi(t) :=
Xi(t)
t

, i = 1, . . . , N, t > 0. (7)

Over a given sample path {X(s), s > 0}, we can further define the limiting values of the mean
service rate

ϕ
i

:= lim inf
t→∞

ϕi(t), ϕ̄i := lim sup
t→∞

ϕi(t), i = 1, . . . , N,

and the asymptotic growth rate of the queues

Y i = lim inf
t→∞

Yi(t), and Ȳi = lim sup
t→∞

Yi(t).

From Assumption 2, the random variables ϕ̄i are bounded, and consequently, we prove in the
following section that the Ȳi are almost surely bounded. We may therefore define the mean
values of vectors, for i = 1, . . . , N ,

Oi := E[ϕ
i
], Ōi := E[ϕ̄i], Qi := E[Y i], Q̄i := E[Ȳi], (8)
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and denote the corresponding vectors by O := (O1, . . . , ON )>, Ō := (Ō1, . . . , ŌN )>, Q :=
(Q1, . . . , QN )> and Q̄ := (Q̄1, . . . , Q̄N )>. Note that rate stability of queue i implies that ϕ

i
= 0

(almost surely) and Qi = 0. Moreover, note that if queue i is stochastically stable, then Q̄i =
Qi = 0 and Ōi = Oi.

3.2 Properties of the asymptotic rates

In this section we derive some properties of the rates of service obtained when a queue is rate
unstable. These properties turn out to be crucial when characterizing the rate stability of the
network. It is convenient to define, for i = 1, . . . , N ,

ηi := µili.

The next result gives a relation between the output rates and the fraction of capacity assigned
for rate unstable queues. For a given stability partitioning of the queues P = (S,U), denote

Z̄P := E
[
lim sup
t→∞

1
t

∫ t

0
gU (XS(s))ds

]
.

Proposition 2. (Balanced output rates for rate-unstable queues) Suppose that the al-
location has symmetric uniform limits (assumption 2). Then if i, j ∈ U , then

ηjŌi = ηiŌj . (9)

In particular if li > 0 and lj > 0, then

Ōi
ηi

=
Ōj
ηj

= Z̄P . (10)

Moreover, if (αj)j∈U are positive numbers, then

E

lim sup
t→∞

∑
j∈U

αjϕj(t)

 =
∑
j∈U

ηjαjŌj .

Proof: For all i ∈ U , Xi diverges in probability to infinity. As φ is bounded, it implies that
φi(X(s))

µi
− ligU (XS(s))→ 0 (in L1), which gives that

E
[

1
t

∫ t

0

(
φi(X(s))

µi
− ligU (XS(s))

)
ds

]
→ 0.

Using the dominated convergence theorem, which allows us to interchange the expectation and
the limit, we obtain that

E
[
limt→∞

1
t

∫ t
0

(
φi(X(s))

µi
− ligU (XS(s))

)
ds
]

= limt→∞ E
[

1
t

∫ t
0

(
φi(X(s))

µi
− ligU (XS(s))

)
ds
]

= 0.

We conclude by observing that

E
[
lim supt→∞

ϕi(t)
µi

]
= E

[
limt→∞

1
t

∫ t
0

(
φi(X(s))

µi
− ligU (XS(s))

)
ds
]

+ liE
[
lim supt→∞

1
t

∫ t
0 g
U (XS(s))ds

]
= liZ̄P

= ηi
µi
Z̄P .
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2The next two propositions compare the outputs of rate stable and rate unstable queues for
asymptotically decreasing allocations.

Proposition 3. (Unbalanced rates between rate stable and rate unstable queues)
Suppose that the allocation is work conserving and decreasing (assumptions 1 and 3). Then φi
is increasing in xi and if i ∈ S and j ∈ U , it holds that

ηjŌi ≤ ηiŌj . (11)

Proof: As φi is increasing in xi, φi(x) ≤ lig(xS). For i ∈ S and j ∈ U , using the convergence
esablished in the previous proposition, we have

Ōi
µi

≤ liE
[
lim sup
t→∞

1
t

∫ t

0
gU (X(s))ds

]
.

2

The following proposition explores the structure of the extended processor-sharing allocation.

Proposition 4. (Comparison of output rates for different stability partitioning) Define
the extended processor-sharing allocation as follows, for i = 1, . . . , N ,

φi(x) = fi(xi)

 N∑
j=1

fj(xj)

−1

,

with fi(xi) ≤ li for all xi ≥ 0, i = 1, . . . , N , and consider two rate stability partition sets
P1 = (S1,U1) and P2 = (S2,U2) such that U2 = U1 ∪ {k}, with k ∈ {1, . . . , N}. Then it holds
that for i = 1, . . . , N ,

ηjŌ
P1
i ≤ ηiŌ

P2
j . (12)

Proof: Using again the lines of the proof of Proposition 2, we get for i = 1, . . . , N ,

ŌP1
i

µi
= E

[
lim sup
t→∞

1
t

∫ t

0

fi(Xi(s))
fi(Xi(s)) +

∑
j 6=i lj

ds

]
, (13)

and
ŌP2
j

µj
=

lj∑N
j=1 lj

. (14)

The proof then follows directly from (13) and (14) by observing that for i = 1, . . . , N ,

fi(Xi(s))
fi(Xi(s)) +

∑
j 6=i lj

≤ li∑N
j=1 lj

.

2

4 Rate stability necessary conditions

4.1 Traffic inequalities

In the absence of stochastic stability assumptions, it is naturally not possible to define the input
rate of the queues as the solutions of the classic traffic equations as in [?] for instance. However,
we can derive traffic inequalities linking the input rates and the asymptotic output rates of the
network. These equations give a mathematical understanding on the common notions of mean
output rates and input rates in the network.
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Theorem 2 (Traffic inequalities). The asymptotic output rates O, Ō and growth rates Q, Q̄
are finite and satisfy the following linear inequalities:

Qi + Ōi ≤ λi +
∑
j

pjiŌj , (15)

Q̄i +Oi ≥ λi +
∑
j

pjiOj . (16)

The work-conserving property (assumption 1) brings the additional inequalities:
N∑
i=1

Ōi
µi
≥ 1, and

N∑
i=1

Oi
µi
≤ 1. (17)

In the special case of ρ > 1 and U = {1, . . . , N}, we have
N∑
i=1

Ōi
µi

= 1. (18)

Proof: Because of exponential service times and Poisson arrivals, X(t) is a Markov process.
Note again that from Assumption 2 the allocation functions φi(.), and hence the transition rates
are bounded. This implies (the departure process from a queue being Di(t) = Ai(t) − Xi(t),
with Ai(t) the arrival process at queue i) that the process {Mi(t), t > 0}, defined by

Mi(t) := Xi(t)−Xi(0)−
∫ t

0
{λi +

∑
j

pjiφj(X(s))
µj

− φi(X(s))
µi

}ds,

is a local martingale. And since the transitions are bounded the martingale satisfies E[M2
i (t)] <

Kt for i = 1, . . . , N , t > 0 and some K > 0 [?]. This implies that the process {Mi(t)/t, t > 0} is a
super-martingale bounded in L2 and consequently, for i = 1, . . . , N , Mi(t)

t → 0 (t→∞), a.s. [?].
Assuming for simplicity that X(0) = 0, it is readily seen from the definitions (7) and (6) that,
for i = 1, . . . , N , t > 0,

1
t
Mi(t) + λi +

∑
j

pjiϕj(t)
µj

− Yi(t) =
ϕi(t)
µi

.

This implies that lim supt→∞
Xi(t)
t < +∞ as well as

lim sup
t→∞

ϕi(t)
µi

= lim sup
t→∞

λi +
∑
j

pjiϕj(t)
µj

− Yi(t)


≤ λi +

∑
j

pji lim supt→∞ ϕj(t)
µj

− lim inf
t→∞

Yi(t).

Using the dominated convergence theorem, we get (15). Relations (16) are obtained along the
same lines. The inequalities in (17) follow from the dominated convergence theorem as well as
the equation

1 = lim sup
t→∞

(
N∑
i=1

ϕi(t)
µi

)
≤

N∑
i=1

lim sup
t→∞

ϕi(t)
µi

.

If ρ > 1, the total number of jobs is transient, and hence for all t, almost surely
∑N

i=1
φi(X(t))

µi
= 1

and
∑N

i=1
ϕi(X(t))

µi
= 1. The last assertion thus follows from Proposition 2. 2
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4.2 Necessary conditions for rate stability for converging rates

In this subsection, we study the case Ō = O, which serves as a benchmark for finding rate
stability conditions in the general case. In many interesting cases, the set of parameters such
that the output rates are not converging is negligible, i.e. corresponds to a frontier between two
regions in the parameter space. However, proving this statement is difficult in general and is
out of the scope of this paper. We however show in the last section that we indeed have the
convergence of the asymptotic growth rates outside a negligible set, for a set of parallel queues
with monotone allocations.

Definition 4 (Õ, Q̃). For a given stability partitioning P = (S,U) (U 6= ∅), define (Õ, Q̃) as
the solution (when it exists) of

oi + qi = λi +
∑
j

pjioj , (19)

N∑
i=1

oi
µi

= 1, (20)

oi
ηi

=
oj
ηj

:= Z̃P (i, j ∈ U), (21)

qi = 0 (i ∈ S). (22)

We first prove the existence of a unique solution for equations (19) to (22). We then give
conditions for this solution to be positive vectors. To simplify the notations, suppose without
loss of generality that the queues are ordered so that the stable ones are the first ones, i.e.,
there exists an index m such that S = {1, . . . ,m} and U = {m + 1, . . . , N}. Define GE1E2 as
the truncation of the matrix G to the queues in E1, E2 : GE1E2 = (G)i∈E1,j∈E2 and similarly the
vector vE = (vi)i∈E . We then write the routing matrix in the following form

P =
(
PSS PSU

PUS PUU

)
.

The vector η is defined as η = (l1µ1, . . . , lNµN ). Let ηS and ηU be the vectors (ηi)i∈S and
(ηi)i∈U . We further define the vector ωS , and the positive constants κP and χP as

ωS = λSHSS ,

κP =
∑

i∈S
(ηUPUSHSS)ei

µi
,

χP =
∑

i∈U li,

where HSS = (I −PSS)−1. Remark that the matrix HSS is not in general the restriction of the
matrix R.

Proposition 5. Fix a partition P = (S,U) (U 6= ∅). There exists a unique solution (Õ, Q̃) of
Equations (19) to (22), characterized by the following equations

ÕS = (λS + Z̃Pη
UPUS)HSS ,

ÕU = Z̃Pη
U ,

Z̃P =
1−
∑
i∈S

ωSi
µi

κP+χP
.

11



Moreover, the solution Õ, Q̃ is positive if and only if

∑
i∈S

ωSi
µi
≤ 1,

and
Z̃Pη

U (IUU − PUU − PUSHSSPSU) ≥ λU + λSHSSPSU .

Proof: The system of Equations (19) to (22) can be rewritten as

ÕS = λS + ÕSPSS + Z̃Pη
UPUS , (23)

Q̃U = λU + ÕSPSU + Z̃Pη
U (PUU − IUU ), (24)∑

i∈S

ÕSi
µi

= 1− χP Z̃P , (25)

since from the definition it follows that Q̃Si = 0 if i ∈ S, and thus Equation (19) reduces
to Equation (23). Similarly Equation (24) can be obtained. Using Equations (21) and (22)
the Equation (25) can be derived. The proposition follows from the fact that the matrices
IE − P E , E = SS, UU are invertible with positive inverse matrices. Then, Õ ≥ 0 and Z̃P ≥ 0,
if and only if ∑

i∈S

ωSi
µi
≤ 1.

Moreover, Q̃ ≥ 0 if and only if

Z̃P(IUU − PUU )ηU ≥ λU + ÕSPSU ,

which follows from Equation (24). 2

It is remarkable that the conditions of positivity of the output rates are not sufficient to char-
acterize the stability set. In the case of parallel queues, we show that the additional conditions
underlined in Section 3 are indeed needed to sharply characterize, for given input parameters,
the rate stability set.

4.3 Necessary conditions for rate stability

To derive necessary conditions for a given rate stability partitioning, we bound the output
rates, taking into account the assumption of feed-forward routing. The bounds are obtained
by comparing the maximum output rates with the outputs previously obtained in a (virtual)
network where Ōi = Oi, for all i.

Lemma 1. For i = 1, . . . , N , we have
Ōi ≤ ωi,

where the vector ω = λR is the solution of the usual traffic equations

ω = λ+ ωP.

12



Proof: Remark first that ω exists and is unique because R = (I−P )−1 is a well-defined positive
matrix since I − P is substochastic. Define the degree of queue i in the following way; di = 0
if pji = 0, for all j = 1, . . . , N,. Otherwise, di = maxj: pji>0{dj}. Because of the absence of
loops in the network, there exists at least one queue i0 of degree 0 (a source). Using the traffic
inequalities of the previous section, we get for all queues i0 of degree 0

Ōi0 ≤ λi0 = ωi0 .

We further proceed by induction on the degree of queues. Suppose the assertion is true for all
degrees less than m. Consider a queue of degree m + 1. It is receiving traffic from queues of
lower degree. Using the traffic inequalities, the induction assumption and the definition of ω,
we get

Ōi ≤ λi +
∑

j:dj≤m
pjiŌj ≤ λi +

N∑
j=1

pjiωj = ωi.

2

We now derive the lemma leading to the main result of this section.

Lemma 2. Let Z̄P := Ōi
ηi
,∀i ∈ U . For each partitioning P = (S,U) (U 6= ∅), we have

Z̄P ≥ Z̃P .

If moreover PUS = 0, then
∀i ∈ S, Ōi ≤ Õi.

Note that this result holds without restriction on the routing policy, and is not limited to
feed-forward routing.
Proof: Using Lemma 1 and the traffic inequalities given in Theorem 2, we can write that

ŌS ≤ ωS + Z̄Pη
SPUSHSS ,

since from Equation (15) we have that Qi = 0 for i ∈ S. Next, using Equation (17) and
χP =

∑
i∈U li, it follows that

1 ≤ χP Z̄P +
∑
i∈S

Ōi
µi
.

Hence, combining these equations we have

(χP + κP)Z̄P +
∑
i∈S

ωSi ≥ χP Z̄P +
∑
i∈S

Ōi
µi
≥ 1,

which gives Z̄P ≥ Z̃P . If PUS = 0, the second assertion follows from Proposition 5. 2

We can now derive necessary conditions for the partitioning P = (S,U) to hold. We make
use here of Lemma 1 and we therefore need the assumption of feed-forward routing.

Theorem 3. Assume a given partitioning P = (S,U). Then for all i ∈ U
ωi
ηi
> Z̃P .

13



Proof: For an unstable queue i, Qi can be written as strictly positive for all i ∈ U , which gives,
using the traffic inequalities

N∑
j=1

pjiŌj + λi − Ōi ≥ Qi > 0.

Using the two previous lemmas, it leads to

∀i ∈ U ,
N∑
j=1

pjiωj + λi − ηiZ̃P ≥
N∑
j=1

pjiŌj + λi − Ōi ≥ Qi > 0,

which gives using Lemma 1 that −ηiZ̃P ≥ Ōi and thus ωi
ηi
> Z̃P . 2

So far, only necessary conditions for a given rate stability partition of the queues follow from
Theorem 3. We illustrate the obtained results on two examples, where the obtained necessary
conditions turn out to be sufficient in the first example and not sufficient in the second.

4.4 Example : two-queue tandem model

We derive necessary and sufficient conditions for rate stability for a tandem system with a
monotone, work-conserving allocation with symmetric uniform limits (assumptions 1, 2, 3).
Consider the system of two queues illustrated in Figure 1. The routing matrix is given by

P =
(

0 p
0 0

)
. (26)

Thus, a fraction p of the output rate of the first queue is sent as input rate to the second queue.
The following traffic equations and inequalities hold (Theorem 2)

Q1 + Ō1 = λ1,

Q2 + Ō2 ≤ pŌ1,

Ō1

µ1
+
Ō2

µ2
≥ 1.

For the corresponding virtual model satisfying Ō = O, the traffic equations are

Õ1 = λ1 − Q̃1,

Õ2 = pÕP1 − Q̃2,

Õ1

µ1
+

Õ2

µ2
= 1,

Õi
ηi

= Z̃P , for i ∈ U.

By P we denote the partition of queues according to their rate stability. P can thus be U = ∅,
and S = {1}, U = {2}, and S = {2}, U = {1}, and U = {1, 2}. The solutions of Õ and Q̃ are
given in Table 1 for each stability subset P.

According to Theorem 3 the network is globally stochastically stable if and only if ρ < 1
which reads

λ1 <
µ1µ2

pµ1 + µ2
.

Note that in this case Ō = Õ = O and Q̄ = Q̃ = Q.

14



P Q̃1 Q̃2 Õ1 Õ2

S = {1, 2}, U = ∅ 0 0 λ1 λ1p

S = {1}, U = {2} 0 pλ1 − (1− λ1
µ1

)µ2 λ1 (1− λ1
µ1

)µ2

S = {2}, U = {1} λ1 − µ1µ2

pµ1+µ2
0 µ1µ2

pµ1+µ2

pµ1µ2

pµ1+µ2

S = ∅, U = {1, 2} λ1 − l1µ1

l1+l2
pl1µ1

l1+l2
− l2µ2

l1+l2
l1µ1

l1+l2
l2µ2

l1+l2

Table 1: Output rates for the stability subsets.

Figure 1: Two queues in tandem.

4.4.1 Necessary conditions for U = {1, 2}

For the partition U = {1, 2}, given that Z̃P = 1
l1+l2

ω = (λ1, pλ1), the following conditions given
by Theorem 3 are necessary

p >
l2µ2

l1µ1
,

λ1 >
µ1l1
l1 + l2

.

Using the last assertion in Theorem 2, we further obtain that Z̄P = Z̃P which implies Ō = Õ = O
and Q̄ = Q̃ = Q.

4.4.2 Necessary conditions for S = {1}, U = {2}

For the partitions U = {1},S = {2} and S = {1},U = {2}, the necessary conditions stated in
Theorem 3 lead to the already known condition ρ > 1. Using Theorem 3 (Z̄P > Z̃P), the first
traffic equation and the additional inequalities given by Theorem 2 and Proposition 3, we obtain

λ1

l1µ1
=
Õ

(S={1},U={2})
1

η1
=
Ō

(S={1},U={2})
1

η1
<
Ō

(U={1,2})
1

η1
=
Õ

(U={1,2})
1

η1
=

1
l1 + l2

,

which leads to the necessary condition λ1 <
µ1l1
l1+l2

.

4.4.3 Necessary conditions for U = {1}, S = {2}

µ1pµ2

(µ1p+ µ2)l2µ2
=
Õ

(U={1},S={2})
2

η2
≤ Ō

(U={1},S={2})
2

η2
,

and
Ō

(U={1},S={2})
2

η2
<
Ō

(U={1,2})
2

η2
=
Õ

(U={1,2})
2

η2
=

1
l1 + l2

,
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and this leads to the necessary condition that p < l2µ2

l1µ1
.

The obtained necessary conditions are easily seen to lead to a complete partitioning of the
parameter set, which gives a sharp characterization of the stability set. As a consequence,
the obtained conditions are both necessary and sufficient, except on a boundary set of input
parameters.

In Figure 2 the stability set is depicted for two different sets of input parameters.

Figure 2: Stability regions with (µ1, l1, µ2, l2) = (3, 1, 1, 1) in the left figure, and with
(µ1, l1, µ2, l2) = (1, 1, 3, 1) in the right figure.

5 Parallel queues

In this section, we consider parallel queues and thus suppose that there is no internal routing,
i.e., pij = 0, for all i, j and that the allocation is monotone. In that case, we can derive a sharp
characterization of the per-queue rate stability. To this end, we first show that in that case, the
traffic inequalities are actually a set of traffic equations (Proposition 6). This allows to prove
that the output rates and asymptotic growth rates converge. Using the results of Sections 3 and
4, we then derive a characterization of the per-queue stability (Theorem 4).

5.1 Extended traffic equations

In this subsection, we specify the traffic inequalities obtained in the general case by deriving
traffic equations linking the input rates and the asymptotic output rates of the network. service
rates.

Proposition 6 (Extended traffic equations). The asymptotic output rates O, Ō and growth
rates Q, Q̄ are finite and satisfy the following linear equations. For i = 1, . . . , N ,

Qi + Ōi = λi, (27)

Q̄i +Oi = λi. (28)

Proof: We follow the same lines as in Theorem 2,

Mi(t) := Xi(t)−Xi(0)−
∫ t

0
{λi − φi(X(s))}ds, (29)

is a martingale that satisfies E[M2
i (t)] < Kt for i = 1, . . . , N , t > 0 and some K > 0. This

implies that lim supt→∞
Xi(t)
t < +∞ and lim inft→∞ Yi(t) = λi − lim supt→∞ ϕi(t). Using the

dominated convergence theorem, we get Equations (27) and (28). 2

5.2 Output rates convergence

We fix P to be a partition of queues such that queues in S are rate stable while queues in U
are rate unstable. In the following proposition, we prove that the output rates of the different
queues converge which further allows a complete description of the rate stability set.
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Proposition 7. Consider a set of parallel queues with a decreasing allocation satisfying the
Assumptions 1 and 2. Then, outside a negligible set of input parameters1, for t→∞,

Xi(t)
t
→ Qi, in probability, (30)

ϕi(t)→ Oi, in probability, (31)

with
Oi = λi (i ∈ S), Oi = ZPηi (i ∈ U),

Qi = 0 (i ∈ S), Qi = λi − ZPηi (i ∈ U),

where

ZP :=
1−

∑
j∈S

λj
µj∑

j∈U lj
=

1−
∑

j∈S ρj∑
j∈U lj

.

Proof:
We first prove that the set of parameters such that Qi = 0 and Q̄i > 0 is ’small’ in the

sense, that increasing one of the λj , j 6= i parameter of any ε > 0 will force Qi > 0. Because
the allocation is decreasing, if λj is replaced by λj + ε, then it can be proven that the number
of customers Xε

j (t) is stochastically increased for all t. We refer to [?] for notions and proofs on
stochastic comparisons for parallel coupled queues. It implies that Ōεi > Ōi. Hence, we obtained
that Qεi = λi − Ōεj > λi − Ōj = 0.

We can now restrict our attention to the case where i ∈ S implies Qi = Q̄i > 0. Let us
now prove the convergence of the rates in that case. Consider (q, o) any limiting point of the
vector (Y(t), ϕ(t)). Using the arguments used in Proposition 2 and Proposition 5, we obtain the
set of equations (27) and (28) for (q, o) together with qi = 0, i ∈ S. Using the work-conserving
property at each time t, we further obtained that

∑
i
oi
µj

= 1. Hence there is a unique limiting
point and the rates are converging. 2

Remark 2. It appears plausible to prove an almost sure convergence for these processes even
without the assumption of exponential service times and Poisson arrivals. This result is out of
the scope of this study but we refer to the method presented in [?] and further used for a set of
discriminatory processor-sharing queues (DPS) in [?] for such a derivation. These techniques,
jointly used with the traffic conservation used here would prove the stated convergence in the
context of stationary marked point processes.

5.3 Characterization of the per-queue rate stability

We assume without loss of generality that the queues are ranked in decreasing order of the loads
ζi := λi

liµi
, in the sense that

ζ1 ≤ · · · ≤ ζN . (32)

The following result shows the relation between the ordering of the queues and the per-queue
rate stability.

Proposition 8. If queue i is rate stable and j < i, then queue j is also rate stable.
1i.e., of dimension strictly less that d if d is the dimension of the space in which the input parameters are

chosen.
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Proof: Suppose j ∈ U , i ∈ S and j < i. From Proposition 3, we get Oi
ηi
<

Oj
ηj

. From Theorem
2, it follows that Oi = λi and that Oj ≤ λj . We thus find that

ζi =
Oi
ηi

<
Oj
ηj
≤ λj
ηj
. (33)

This contradicts ζj ≤ ζi. 2

Denote Z(m) = Z{1,...,m} =
1−
∑
i≤m ρi∑
i>m li

. The following result shows that the partitioning
P = (S,U) has a simple structure.

Theorem 4 (Structure of stability partitioning). Consider a set of parallel queues with a de-
creasing allocation verifying the Assumptions 1, 2 and 3. The stability partitioning P = (S,U)
is characterized as follows P = (S,U) with S = {1, . . . ,m} and U = {m+ 1, . . . , N} if and only
if

ζm ≤ Z(m) < ζm+1. (34)

Proof: Using Proposition 8, there exists a k such that S = {1, . . . , k} and U = {k + 1, . . . N}.
Theorem 3 combined with Proposition 7 gives that Z(k) < ζ(k + 1). Proposition 8 gives

Ōk
ηk
≤ Ōk+1

ηk+1
,

which in combination with the traffic equations leads to

ζk ≤ Z(k).

As Z(·) is a decreasing function, we conclude that m = k. 2

We emphasize that Theorem 4 gives a complete characterization of the rate stability par-
titioning for model instances that satisfy Assumptions 1, 2, and 3. Typical examples of such
allocations are the coupled-processors allocation (defined in Section 2.1), and utility-based allo-
cations on some tree topology (see [?]).

6 Conclusion and topics for further research

The results presented in this study provide new intuition and fundamental insight in the stability
and throughput behavior of queueing models in which resources are shared among different
queues. These results should be viewed as a first step in understanding the behavior of this type
of queueing networks, and open up a wealth of challenging open research questions. Some of
these questions will be briefly touched upon below.

In the context of stability and throughput characteristics, several interesting questions remain
to be answered. First, when X is a continuous-time Markov process, it actually remains an open
and crucial question to know for which input parameters, rate instability of queue i coincides to
the convergence of Xi to infinity (either in probability or in law). In [?], per-queue stochastic
stability is established for parallel queues with monotone allocation functions. It is remarkable
that, except possibly on the boundary of the stability sets, the conditions for rate instability (and
thus stochastic instability) that we have derived here coincide with the sharp characterization of
the stochastic instability set given in [?]. This encouraging observation calls for a generalization
of this result to more complex topologies.
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